

ADVANCES IN FLUKA PET TOOLS

Caterina Cuccagna Tera Foundation (CERN) and University of Geneva

Ricardo Santos Augusto, <u>Caterina Cuccagna</u>, Wioletta Kozlowska ,Pablo Garcia Ortega, Yassine Toufique, Othmane Bouhali , Alfredo Ferrari, Vasilis Vlachoudis

Naples, 18/10/2017

UNIVERSITÉ DE GENÈVE

EACHLITÉ DES SCIENCE

Rationale: Why FLUKA for PET

Physics Models

- All Hadrons , Leptons
- On-line evolution of induced radioactivity and dose
- Benchmarked in the MA energy range (in addition to HEP)

See talk G.Battistoni Id. 54

FLAIR Complete IDE^{*} for all FLUKA simulation phases (input, geometry editor, debugging, post-processing output visualization)

*Integrated Development Environment

Voxel geometries

natively integrated with FLUKA tools for QA MC-TPS

DICOM information from clinical CT to FLUKA Voxel geometry

Introduction

Methods

Results

Introduction

Methods

FLUKA code development for (p,d), (n,d) reactions Excitation functions ¹²C(p,x)¹¹C and ¹⁶O(p,x)¹⁵O, relevant for PET : Now deuteron formation at low energies is treated directly and no longer through coalescence

Results

3

Rationale: Why FLUKA for PET

Most recent FLUKA code developments

- Scoring annihilation at rest and activity binning
- New flag forkeeping track for (parent) Isotope:

NSS-MIC 2017, Atlanta

Introduction	Methods	Results	Conclusions	4	

Rationale: Why FLUKA for PET

Most recent FLUKA application for in-beam PET

Protons in PMMA

Fig. 8 (a) Image (central slice) of the phantom A obtained for an acquisition time of 519 s. (b) Image (central slice) of the phantom B obtained for an acquisition time of 485 s. In both acquisitions, only interspill and after-treatment data are considered.

M.G. Bisogni "INSIDE in-beam positron emission tomography system for particle range monitoring in hadrontherapy," J. Med. Imag. 4(1), 011005 (2017), doi: 10.1117/1.JMI.4.1.011005.

Results on patient presented by E.Fiorina Id. 143

Introduction

Methods

Results

Conclusions

FLUKA PET tools : the Origins..

Integrated in FLAIR

- Developed in 2013
- Tested for conventional PET
- Generic Radioactive sources
- Example for small PET scanner
- Fixed position of the PET scanner
- Only one image reconstruction algorithm (FBP)

Bie Edit Card Input	Yew Tools Help Templates: custon Module D: alegro - Alegro, D: alegro - Alegro, D: geadyance - GE D: geadyance - GE D: micropefrat-Ninez - Hillers, D: micropefrat-Ninez - Hillers, D: micropefrat-Ninez - Hillers, Radial D: micropefrat-Ninez - Hillers, D: micropefrat-Ninez - Hillers,	Philips EXACT HR+ HRRT, Siemens Advance, GEM3 emens MicroPET F4. Coss220, Siemens TOPET F4. Concrote	Scamer Generator	Flain	
Prot Prot Data Prot Database Codedator Codedator	Pet Nmodules Bagen	Auro388 10.0 Auro388 10.0 Auro386 0.2 Modules 12 Radius 200.0 Opening Angle 30.0 Material VACUUM Surrounding Region			cm deg
p:	Exe:	Dir: Au	ome/pgarciao	á Creat	8

- \bullet Inferring the dose map from the $\beta +$ emitter distribution
- Test new PET design/options

P. G. Ortega

ANIMMA2013

Introduction

Methods

Results

Conclusions

FLUKA PET tools: today

Rototranslations

- Integration of post processing and scoring routines in Fluka
- New PET scanners and validation with NEMA source
- In-beam PET , beam time structure and acquisition time
- Studies with RIB(Radioactive Ion Beams)
- MLEM code

Results

WORKFLOW

PET SCANNER MODELS

Introduction

Methods

Results

cm

cm

cm

cm

Rototranslations

Pet

Possibility to roto-translate the scanner by defining a translation vector for the center and a rotation vector for the axis

Methods

Results

Geometry for New Detectors

WORKFLOW

Specific PET parameters

Output unit Binary or ASCII

- Energy resolution- Energy window interval around the 511keV (min-max)
- Acquisition time interval (min-max) [s]
- Time resolution of the detector [ns]
- Pulse time of the detector [ns]
- Hit dead time of the detector [ns]

> 5 Specific scoring routines

- Collection of input parameters
- Collection of Energy deposited in each crystal
- Stores info of particle and parents when created.
- Dumps the buffer into an output file in list mode
- Implementation of the hit dead time and energy window

Introduction

WORKFLOW

Introduction

WORKFLOW

The user can perform several analysis : Ex. For in-beam PET with a C12 ion beam

Parent Isotope studies

180 s

Introduction

Methods

Results

Conclusions

The user can perform several analysis : Ex. For in-beam PET with a C12 ion beam

In space

Methods

17

The user can perform several analysis : Ex. For in-beam PET with a C12 ion beam

Parent Isotope studies

180 s

Introduction

Methods

Results

The user can perform several analysis on single hit: Ex. For in-beam PET with a C12 ion beam

Parent Isotope studies

In time

Introduction

The user can perform several analysis on single hit: Ex. For in-beam PET with a C12 ion beam

Parent Isotope studies

Introduction

Methods

20

The user can perform several analysis : Ex. For in-beam PET with a C12 ion beam

Methods

Results

The user can perform several analysis : Ex. For in-beam PET with a C12 ion beam

Parent Isotope studies

180 s

Introduction

Methods

22

23

WORKFLOW

Reconstruction codes

FBP (python) Filtered Back Projection

- Based on the Fourier slice theorem.
- Simple, fast... not accurate enough
- Available in **scikit-image** Python package.

MLEM Maximum-Likelihood Expectation-Maximization

- Best estimates the reconstruction image maximizing the *likelihood function*: Finds the mean number of radioactive disintegrations in the image that can produce the sinogram with the highest likelihood.
- Iterative, more accurate

Integration with STIR

- Easy to implement Sinogram outputs to STIR
- STIR Templates are ready for the users, to use different algorithms.

1. Conventional PET for small animals: Example of a commercial scanner (MicroPET P4 scanner)

2. In beam PET in Hadrontherapy with Beta + Radioactive Ion Beams

Introduction

Methods

Results

	Ecat EXACT HR+ O GE Advance	Image: Constraint of the second sec
Parameters	P4 scanner	Coincidence time window: 6 ns
Crystal dimensions [mm ³]	2.2x2.2x10	oHit dead-time: 500 ns
Detector diameter (cm)	26	•Coincidence dead-time: 43 ns
Transaxial Field of View (FOV in cm)	18	•Energy window: 261-761 keV
Axial Field of View (cm)	7.8	\circ Detector resolution: 0.14 ns
Number of detector blocks	168	oPulse time: 50 ns
Total number of detectors (8x8x168) (LSO)	10752	1

Voxelized phantom: Digimouse Atlas

neuroimage.usc.edu-Digimouse

Optimization for FLUKA courtesy of M.P.W. Chin

○*F-18 source*, generated from USRBIN of Mouse PET image

Methods

Results

Voxelized phantom: Digimouse Atlas

Methods

○Run details:

Simulation ran at CERN Cluster.
100 jobs, 5 cycles per job = 500 runs
5 million primaries per run

oResults:

Average CPU time per cycle: 4.16 +- 0.09 hours
 ~35 million Coincidences:

 99.998% trues
 0.002% scatters
 0% randoms

Trues coincidence list file is a 20Gb file...
 Some hours to process the input files and to reconstruct
 MLEM up to 70 iterations

MicroPET FOCUS PET

Reconstructed images

8 ş 8 8 8 8 8 8

Mouse Phantom CT neuroimage.usc.edu-Digimouse

> FBP (python) Filtered Back Projection

MLEM (new code!) Maximum-Likelihood Expectation-Maximization

Results

> Annihilations at rest results: Imaging Potential Estimator

DOSE

ANNIHILATIONS AT REST

SOBP in water phantom

0,1

0.01

0.001

R. S. Augusto et al., NSS-MIC 2016, Strasbourg

Introduction

10 15

20

10

(cm)

-10

-15

Introduction

> Towards a clinical in-beam PET scenario

PET scanner model

Siemens Biograph mCT as in HIT.

Dose delivery of 1 Gy For SOBPs ,11C beam

R. S. Augusto et al. , PTCOG 2017 Yokohama

> Towards a clinical in-beam PET scenario

Acquisition time intervals:

EOB:End of BEAM

Introduction Methods Results Conclusion	Introduction	Methods	Results	Conclusions
---	--------------	---------	---------	-------------

Introduction

Methods

> Towards a clinical in-beam PET scenario : offline 25 min

Acquisition Offline

Results

Conclusions

In-beam PET with RIB

> Towards a clinical in-beam PET scenario : online 130 s

R. S. Augusto et al. ,RAD 2017

ntroduction	Methods	Results	Conclusions	36

> Towards a clinical in-beam PET scenario : in-spill (16 spills)

R. S. Augusto et al. ,RAD 2017

Introduction	Methods	Results	Conclusions	37
introduction	MELHOUS	Results	Conclusions	57

Conclusions and next steps

On going works with PET tools.....

- Validation of the Clinical Biograph mCT
 - Comparison with other codes
 - NEMA Image Quality phantom validation

- Radioactive Ion beam validation with NIRS experimental results
- ➢ In-beam PET with INSIDE for ¹²C and short acquisition time

Thanks for your attention!

Back-up slides

Conventional PET

- \checkmark non invasive imaging modality
- ✓ nuclear medicine field
- \checkmark provides three-dimensional (3D) tomographic images of radiotracer

distribution

within a living subject (molecular imaging)

1. Radiotracer production

2. Administration of the radiotracer

3. Data Acquisition

4. Image Reconstruction

FLUKA Monte Carlo code describes b+ emitter distribution for CT-based calculations in patient using

- Planning CT (segmented into 27 material) and same CT-range calibration curve as TPS (Parodi et al MP 34, 2007, PMB 52, 2007)
- Experimental cross-sections for b+ emitter production
- Semi-empirical biological modeling (Parodi et al IJROBP 2007)
- Convolution with 3D Gaussian kernel (7-7.5 mm FWHM)

Introduction

Methods

Results

Conclusions

PROCESSING

Michelogram

- Arc correction. The radial bin size is corrected for the circular shape of the detector.
- Maximum Ring Difference (MRD). The difference between two rings events can be restricted to a maximum value.
- Span. Extent of axial data combined. Reduces the size of the stored data.
- Mashing factor. Reduction of the angular sampling. Reduces the size of the stored data.
- Number of segments. Parameter related to MRD and span number.
 Defines the number of segments the cells in the Michelogram can be divided.

- True coincidences, where the line drawn between the two hit detector elements for that event passes through the point of origin
- Scatter coincidences, where one or both 511-keV photons undergo Compton scatter (unwanted)
- Random coincidences occur when two distinct radionuclei contribute one detected photon (unwanted)
- γ-coincidences occur when a 511 keV photon and a γ-photon are detected (unwanted)

For certain applications, as when using continuous detectors, where the spatial discretization of the measurements leads to loss of information, it is more appropriate to use a list-mode version of the ML-EM algorithm [*]. Using this method, the main summation runs through the N events in the list-mode data (I = $1, \dots, N$). The algorithm is given by:

$$f_j^{k+1} = \frac{f_j^k}{S_j} \sum_{l=1}^N a_{i_l j} \frac{1}{\sum_{b=1}^J a_{i_l b} f_b^k}$$

Here, $b = 1, \dots, J$ is the pixel index in the projection operation. The system matrix_{*i*1} is the probability that a detected emission from pixel j is

detected in the ith detector-pair, corresponding to event I. The list-mode ML-EM algorithm is used for image reconstruction throughout this work.

[*] Barrett, H., White, T., Parra, L.: List-mode likelihood. J. Opt. Soc. Am. A 14 (1997) 2914

•*During FLUKA simulation*: Information of the hits is stored in a buffer and dumped list mode

•Routines in scoring folder:

Usrini.f: Collects the scoring parameters from input. Temporary...
 Mgdraw.f: Calls petsco.f if energy deposited in PET crystals, and petddt.f and petdmp.f when buffer is full. Temporary...

stupre(f)_pet.f: Stores info of particle and parents when created.

Petsco.f: Routine to deal with the energy depositions in PET crystals.

Petddt.f: Routine that implements the hit dead time and energy window
 Petdmp.f: Routine that dumps the buffer information in list mode

(ascii/bin)

(PETCOM): Common with parameters and buffer definitions

Udcdrl.f*: Direction biasing. Normally I don't use it, but it is there anyway.

Compile: Compile script

•Example of FLUKA card to activate PET routines:

USRICALL	PET00000	PET00575	41.	3.61E-04	5.61E-04	SCORE
USRICALL	0.	1.E+99	.14	50.	-500.	SCORE2

•Only scoring parameters, no PET geometry involved. •If SDUM=SCORE:

WHAT(1): Minimum region of PET crystals

WHAT(2): Maximum region of PET crystals

WHAT(3): Output unit (<0 binary, >0 ascii)

WHAT(4): Minimum energy window limit [GeV]

WHAT(5): Maximum energy window limit [GeV]

•If SDUM=SCORE2:

WHAT(1): Minimum acquisition time [s]

WHAT(2): Maximum acquisition time [s]

WHAT(3): Time resolution of the detector [ns]

WHAT(4): Pulse time of the detetor [ns]

WHAT(5): Hit dead time of the detector [ns] (<0 Paralyzable, >0 Non-paralizable, =0 not used)